Name:

Question 1 We mentioned in class that $\prod_{\alpha \in A} X_{\alpha}$ with the product topology is connected if each X_{α} is

- a) Prove this statement for finite products. Hint: Theorem II.10.6 in the textbook.
- b) Prove this statement for arbitrary products. Hint: Exercise II.12.6.
- c) Show that \mathbb{R}^{ω} is disconnected in the box topology. Hint: Write \mathbb{R}^{ω} as a union of the collection of bounded sequences and the collection of unbounded sequences.
- d) Is \mathbb{R}^{ω} connected in the uniform topology?

Question 2 In this problem we will study the real projective 3-space $\mathbb{R}P^3$ a little more. In class we showed that $\mathbb{R}P^3 \cong S^3/\{x \sim -x\} \cong B^3/\{\text{antipodal points of } S^2 = \partial B^3\}.$

Let SO(3) denote the special orthogonal group of \mathbb{R}^3 . That is SO(3) consists of those 3×3 matrices A such that det A = 1 and $A^T A = AA^T = I$. Using elementary linear algebra, one can easily see that SO(3)preserves the standard inner product $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \vec{y}$ on \mathbb{R}^3 . To wit, $\langle \vec{x}, \vec{y} \rangle = \vec{x}^T \vec{y} = \vec{x}^T A^T A \vec{y} = (A\vec{x})^T (A\vec{y}) =$ $\langle A\vec{x}, A\vec{y} \rangle$. Thus, A preserves the lengths of vectors and angles between them. Three basis vectors $\vec{x}, \vec{y}, \vec{z}$ in \mathbb{R}^3 are positively (resp. negatively) oriented if $\det[\vec{x} \mid \vec{y} \mid \vec{z}] > 0$ (resp. < 0). Since $A[\vec{x} \mid \vec{y} \mid \vec{z}] = [A\vec{x} \mid A\vec{y} \mid A\vec{z}]$, we see that A preserves the orientation of basis vectors, since $\det A = 1$. It is a more advanced fact from linear algebra (see, for example, Theorem 14.12 of the Schaum's outline in linear algebra), that for a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, $\vec{x} \mapsto A\vec{x}$, where $A \in SO(3)$, there exists an orthonormal basis such that T

has a matrix representation relative to this basis which looks like $-\sin\theta$. Thus, T may be re- $\cos \theta$ $0 \sin \theta$

garded as a counterclockwise rotation through angle θ , $(0 \le \theta < 2\pi)$ in a plane orthogonal to a fixed direction.

a) Show that $SO(3) \cong \mathbb{R}P^3$. Hint: Regard B^3 as the solid ball of radius π in \mathbb{R}^3 . Given $A \in SO(3)$, a rotation through angle θ about a fixed direction \vec{v} , identify A with the point $\theta \vec{v}$ of B^3 . The key is to figure what to due for rotations with $\theta > \pi$. Such rotations are equivalent to others with $\theta < \pi$.

Note: Since the collection of all 3×3 matrices is linearly homeomorphic to \mathbb{R}^9 , we have shown that $\mathbb{R}P^3 \cong SO(3)$ can be regarded as a 3-dimensional (non-linear) submanifold of \mathbb{R}^9 , and that $\mathbb{R}P^3$ inherits the structure of a topological group (that is, a group G so that the operation $(g,h) \mapsto gh$ is a continuous map from $G \times G \to G$ and $g \mapsto g^{-1}$ is a continuous map from $G \to G$). In fact, all of this can be done in the smooth category, and thus $\mathbb{R}P^3 \cong SO(3)$ is an example of a *Lie group*.

Now we investigate one more interpretation of $\mathbb{R}P^3$. Let $S^2 \subset \mathbb{R}^3$ be the unit 2-sphere. At each point $p \in S^2$, there is a 2-dimensional tangent plane, denoted T_pS^2 . By translating the plane back to the origin, we regard T_pS^2 as a 2-dimensional linear subspace of \mathbb{R}^3 . The tangent bundle of S^2 , denoted TS^2 is the collection of all tangent vectors at all points of S^2 . That is, $TS^2 = \bigcup_{p \in S^2} T_pS^2 = \{(p, \vec{v}) \mid p \in S^2 \text{ and } \vec{v} \in T_pS^2\}$. TS^2 can be given the structure of a 4-dimensional manifold (it is an example of a non-trivial vector bundle: $TS^2 \ncong S^2 \times \mathbb{R}^2$). We may also look at the unit tangent bundle T_1S^2 : $T_1S^2 = \{(p, \vec{v}) \mid (p, \vec{v}) \in TS^2 \text{ and } ||\vec{v}|| = 1\}$.

b) Show that $T_1S^2 \cong \mathbb{R}P^3$ by showing that $T_1S^2 \cong SO(3)$. Hint: Let \vec{v}_2 be a unit tangent vector to S^2 based at p. Then if we regard the point p itself as a unit vector \vec{v}_1 , the tangent plane at p is spanned by \vec{v}_2 and $\vec{v}_3 = \vec{v}_1 \times \vec{v}_2$. Thus, we have a bijective correspondence between unit tangent vectors to S^2 and orthonormal triples: $\vec{v}_2 \leftrightarrow \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$. There are just a few more steps - complete the proof and fill in the gaps.

Application: The homeomorphism between $\mathbb{R}P^3$ and T_1S^2 can be used to show that if your head is a (smooth) 2-sphere, then you can't comb your hair without a part.

Summary: We now have five different interpretations of $\mathbb{R}P^3$:

1. $S^3/\{x \sim -x\}$

- 2. $B^3/\{\text{antipodal points of } S^2 = \partial B^3\}$ 4. T_1S^2 , the unit tangent bundle to S^2
- The collection of 1-dimensional subspaces of \mathbb{R}^4