
Math 440/540 Supplementary Exercises 3 Name:

Question 1 We mentioned in class that
∏

α∈A Xα with the product topology is connected if each Xα is
connected.
a) Prove this statement for finite products. Hint: Theorem II.10.6 in the textbook.
b) Prove this statement for arbitrary products. Hint: Exercise II.12.6.
c) Show that Rω is disconnected in the box topology. Hint: Write Rω as a union of the collection of bounded
sequences and the collection of unbounded sequences.
d) Is Rω connected in the uniform topology?

Question 2 In this problem we will study the real projective 3-space RP 3 a little more. In class we showed
that RP 3 ∼= S3/{x ∼ −x} ∼= B3/{antipodal points of S2 = ∂B3}.

Let SO(3) denote the special orthogonal group of R3. That is SO(3) consists of those 3 × 3 matrices A
such that det A = 1 and AT A = AAT = I. Using elementary linear algebra, one can easily see that SO(3)
preserves the standard inner product 〈~x, ~y〉 = ~xT ~y on R3. To wit, 〈~x, ~y〉 = ~xT ~y = ~xT AT A~y = (A~x)T (A~y) =
〈A~x,A~y〉. Thus, A preserves the lengths of vectors and angles between them. Three basis vectors ~x, ~y, ~z in R3

are positively (resp. negatively) oriented if det[~x | ~y | ~z] > 0 (resp. < 0). Since A[~x | ~y | ~z] = [A~x | A~y | A~z],
we see that A preserves the orientation of basis vectors, since det A = 1. It is a more advanced fact from
linear algebra (see, for example, Theorem 14.12 of the Schaum’s outline in linear algebra), that for a linear
transformation T : R3 → R3, ~x 7→ A~x, where A ∈ SO(3), there exists an orthonormal basis such that T

has a matrix representation relative to this basis which looks like

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

. Thus, T may be re-

garded as a counterclockwise rotation through angle θ, (0 ≤ θ < 2π) in a plane orthogonal to a fixed direction.

a) Show that SO(3) ∼= RP 3. Hint: Regard B3 as the solid ball of radius π in R3. Given A ∈ SO(3), a
rotation through angle θ about a fixed direction ~v, identify A with the point θ~v of B3. The key is to figure
what to due for rotations with θ > π. Such rotations are equivalent to others with θ < π.

Note: Since the collection of all 3 × 3 matrices is linearly homeomorphic to R9, we have shown that
RP 3 ∼= SO(3) can be regarded as a 3-dimensional (non-linear) submanifold of R9, and that RP 3 inherits the
structure of a topological group (that is, a group G so that the operation (g, h) 7→ gh is a continuous map
from G × G → G and g 7→ g−1 is a continuous map from G → G). In fact, all of this can be done in the
smooth category, and thus RP 3 ∼= SO(3) is an example of a Lie group.

Now we investigate one more interpretation of RP 3. Let S2 ⊂ R3 be the unit 2-sphere. At each point p ∈ S2,
there is a 2-dimensional tangent plane, denoted TpS

2. By translating the plane back to the origin, we regard
TpS

2 as a 2-dimensional linear subspace of R3. The tangent bundle of S2, denoted TS2 is the collection of all
tangent vectors at all points of S2. That is, TS2 =

⋃
p∈S2 TpS

2 = {(p,~v) | p ∈ S2 and ~v ∈ TpS
2}. TS2 can

be given the structure of a 4-dimensional manifold (it is an example of a non-trivial vector bundle: TS2 6∼=
S2 × R2). We may also look at the unit tangent bundle T1S

2: T1S
2 = {(p,~v) | (p,~v) ∈ TS2 and ‖~v‖ = 1}.

b) Show that T1S
2 ∼= RP 3 by showing that T1S

2 ∼= SO(3). Hint: Let ~v2 be a unit tangent vector to S2 based
at p. Then if we regard the point p itself as a unit vector ~v1, the tangent plane at p is spanned by ~v2 and
~v3 = ~v1×~v2. Thus, we have a bijective correspondence between unit tangent vectors to S2 and orthonormal
triples: ~v2 ↔ {~v1, ~v2, ~v3}. There are just a few more steps - complete the proof and fill in the gaps.
Application: The homeomorphism between RP 3 and T1S

2 can be used to show that if your head is a
(smooth) 2-sphere, then you can’t comb your hair without a part.

Summary: We now have five different interpretations of RP 3:
1. S3/{x ∼ −x} 2. B3/{antipodal points of S2 = ∂B3}
3. SO(3) 4. T1S

2, the unit tangent bundle to S2

5. The collection of 1-dimensional subspaces of R4


