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1. Introduction

We prove the following theorem on the divergence of a vector field.

Theorem 1.1. Let ẋ = F(x) be a system of differential equations in Rn with flow
φ(t;x). Let D be a region in Rn with finite n–dimensional volume and piecewise
smooth boundary ∂D. Let D(t) be the region formed by flowing along for time t,

D(t) = {φ(t;x) | x ∈ D}.

Let V (t) be the n–dimensional volume of D(t). Then

d

dt
V (t) =

∫
D(t)

divF(x) dV

Much of what follows is adapted from [3].

2. Preliminary Results

The first result is about differentiating determinants.

Lemma 2.1. Let A(t) = [v1(t) | · · · | vn(t)] be an n×n matrix with columns vi(t)
which depend on t. Then

d

dt
detA(t) = det

[
d

dt
v1(t) | · · · | vn(t)

]
+ det

[
v1(t) | d

dt
v2(t) | · · · | vn(t)

]
+ · · ·+ det

[
v1(t) | v2(t) | · · · | d

dt
vn(t)

]
Proof. The proof follows trivially from the multilinearity of the determinant as a
function of its columns. We have the identity:

detA(t+ h) = det [v1(t+ h) | · · · | vn(t+ h)] =

det [v1(t+ h)− v1(t) | v2(t+ h) | · · · | vn(t+ h)]

+ det [v1(t) | v2(t+ h)− v2(t) | · · · | vn(t+ h)]

+ · · ·
+ det [v1(t) | v2(t) | · · · | vn(t+ h)− vn(t)]

+ det [v1(t) | v2(t) | · · · | vn(t)]

1



2 J. BORZELLINO

Thus,
detA(t+ h)− detA(t)

h
=

det

[
v1(t+ h)− v1(t)

h
| v2(t+ h) | · · · | vn(t+ h)

]
+ det

[
v1(t) | v2(t+ h)− v2(t)

h
| · · · | vn(t+ h)

]
+ · · ·

+ det

[
v1(t) | v2(t) | · · · | vn(t+ h)− vn(t)

h

]
The proof follows by taking a limit as h→ 0. �

The next lemma is known as the Liouville formula or Abel’s formula.

Lemma 2.2. Let M(t) be a fundamental matrix solution for the linear system
of differential equations ẋ = A(t)x. That is, M ′(t) = A(t)M(t) and M(t0) is
invertible for some t0 ∈ R. Then

d

dt
detM(t) = trace(A(t)) detM(t)

Proof. Let {ei} denote the standard basis for Rn. For t0 ∈ R we have

det
(
M(t)M(t0)−1

)
= det

[
M(t)M(t0)−1e1 | · · · |M(t)M(t0)−1en

]
.

By lemma 2.1,

d

dt

∣∣
t=t0

det
(
M(t)M(t0)−1

)
=

det

[
d

dt

∣∣
t=t0

M(t)M(t0)−1e1 | · · · |M(t0)M(t0)−1en

]
+

det

[
M(t0)M(t0)−1e1 |

d

dt

∣∣
t=t0

M(t)M(t0)−1e2 | · · · |M(t0)M(t0)−1en

]
+ · · ·+

det

[
M(t0)M(t0)−1e1 |M(t0)M(t0)−1e2 | · · · |

d

dt

∣∣
t=t0

M(t)M(t0)−1en

]
=

det
[
A(t0)M(t0)M(t0)−1e1 | e2 | · · · | en

]
+ det

[
e1 | A(t0)M(t0)M(t0)−1e2 | · · · | en

]
+ · · ·+

det
[
e1 | e2 | · · · | A(t0)M(t0)M(t0)−1en

]
=

det [A(t0)e1 | e2 | · · · | en] + det [e1 | A(t0)e2 | · · · | en] + · · ·+
det [e1 | e2 | · · · | A(t0)en] =

det

 n∑
j=1

aj1(t0)ej | e2 | · · · | en

+ · · ·+ det

e1 | e2 | · · · | n∑
j=1

ajn(t0)ej

 =

det [a11(t0)e1 | e2 | · · · | en] + · · ·+ det [e1 | e2 | · · · | ann(t0)en]

=

n∑
i=1

aii(t0) = trace(A(t0))
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Using the fact that the determinant of a product is the product of the de-
terminants, the first and last lines above can be rewritten as d

dt |t=t0 detM(t) =
trace(A(t0)) detM(t0). �

The next lemma is often referred to as the first variation formula.

Lemma 2.3. For a C1 vector field F, the flow φ(t;x0)of the system of differential
equations ẋ = F(x) satisfies

d

dt
Dxφ(t;x0) = DF(φ(t;x0))Dxφ(t;x0).

where Dxφ(t;x0) =

[
∂φi
∂xj

(t;x0)

]
is the matrix of partial derivatives with respect to

Rn and DF(φ(t;x0)) =

[
∂Fi

∂xj
(φ(t;x0))

]
.

Proof. From the theory of dynamical systems all required derivatives exist and
interchange of order of differentiation is justified [1]. Thus,

d

dt
Dxφ(t;x) = Dx

d

dt
φ(t;x) = Dx(F(φ(t;x)) = DF(φ(t;x))Dxφ(t;x)

where the last equality is just the chain rule. �

3. Proof of Theorem 1.1

Since φ(0;x) = x, we have Dxφ(0;x) = I, the identity map. Since φ(t;x) is a
diffeomorphism we have that detDxφ(t;x) > 0 for all t ≥ 0 for which the flow is
defined. Thus, by the change of variables formula for multiple integration we have:

V (t) =

∫
D(t)

1 dV =

∫
D

detDxφ(t;x) dV

Hence,

d

dt
V (t) =

∫
D

d

dt
detDxφ(t;x) dV =

∫
D

trace(DF(φ(t;x)) detDxφ(t;x) dV

=

∫
D

divF(φ(t;x)) detDxφ(t;x) dV =

∫
D(t)

divF(x) dV

Lemma 2.3 implies that the matrix Dxφ(t;x) is a fundamental matrix solution
to a system of differential equations. Thus, the third equality above follows from
lemma 2.2 applied to the matrix Dxφ(t;x). The last equality is the change of
variables formula again.

Corollary 3.1.
d

dt
V (t) =

∫
∂D(t)

(F ·N) dS, where N denotes the outward pointing

unit normal to ∂D(t).

Proof. Note that since ∂D(t) is (n − 1)-dimensional, the integral in the corollary
is an (n − 1)-dimensional integral over a piecewise smooth hypersurface in Rn. In
particular, in dimension 2, this follows by applying the divergence form of Green’s
theorem to the result of theorem 1.1. Likewise in dimension 3, the result follows
from the classical Gauss divergence theorem. In higher dimensions, the result fol-
lows from the generalized divergence theorem [2]. �
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4. Appendix: Integration over Hypersurfaces in Rn

In this appendix, we give provide the background necessary to compute the
integral that appears in corollary 3.1. Much of what follows is adapted from [2].
Let Mn−1 ⊂ Rn be an (n − 1)-dimensional orientable hypersurface given by a
parametrization Φ : D ⊂ Rn−1 → Rn.

Φ(u1, . . . , un−1) = (f1(u1, . . . , un−1), . . . , fn(u1, . . . , un−1))

We assume that the columns Φui of DΦ are linearly independent at each point
u ∈ D, and thus they span TpM , the tangent space of M at p = Φ(u). Since each
tangent space is (n − 1)-dimensional, there is a well-defined (up to choice of ±)
smooth unit normal vector field N on M . For concreteness, we choose N so that
the matrix

A =
[
N Φu1

. . . Φun−1

]
has detA > 0.

How can we compute a unit normal? In R3, N is easy to compute since it must
be parallel to the cross product Φu1

× Φu2
. We need an analogue of the cross

product in Rn. We can do this with the help of a proposition:

Proposition 4.1. Let x1, . . . ,xn−1 be linearly independent vectors in Rn and let X
be the n× (n− 1) matrix that has x1, . . . ,xn−1 as its columns. Let c = (c1, . . . , cn)
be the vector in Rn where

ci = (−1)i−1 detX(1, . . . , î, . . . , n)

Here X(1, . . . , î, . . . , n) is the (n− 1)× (n− 1)matrix obtained from X by deleting
the i-th row. Then c has the following properties:

(1) c is non-zero and orthogonal to each xi.
(2) det

[
c x1 . . . xn−1

]
> 0.

(3) ‖c‖ = volume of parallelepiped spanned by x1, . . . ,xn−1 = Vol(X).

Note that when n = 3, the vector c = x1 × x2 and thus c is referred to as the
generalization of cross product to Rn. It is often denoted by x1 × · · · × xn−1.

Proof. Let a = (a1, . . . , an) ∈ Rn be any vector. Then by expanding the determi-
nant down the first column we have

det
[
a x1 . . . xn−1

]
=

n∑
i=1

ai(−1)i−1 detX(1, . . . , î, . . . , n) = a · c

Thus, if a = xi, we have, xi · c = det
[
xi x1 . . . xn−1

]
= 0 since the matrix

has two identical columns. Hence c is orthogonal to each xi.
To see that c is non-zero, observe that columns of X span an (n−1)-dimensional

subspace and so rank(X) = (n − 1). A basic theorem of linear algebra states
that rank(X) = rank(XT ) and thus the rows of X span a subspace of dimension

(n− 1) as well. If row i is the linearly dependent row, then detX(1, . . . , î, . . . , n) 6=
0 whence ci 6= 0 and thus c is non-zero. This proves (1). If a = c, then
det
[
c x1 . . . xn−1

]
= c · c = ‖c‖2 > 0. This proves (2). To prove (3), note

that [
c x1 . . . xn−1

]T [
c x1 . . . xn−1

]
=

[
‖c‖2 0

0 XTX

]
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By taking determinant of both sides yields

‖c‖4 = det
[
c x1 . . . xn−1

]T
det
[
c x1 . . . xn−1

]
= ‖c‖2 Vol(X)

2

from which it follows that ‖c‖ = Vol(X). Note that we used the fact that Vol(X) =√
det(XTX). �

Now we return to our discussion of surface integrals. By proposition 4.1, if we
let X = DΦ, then N = c/‖c‖ is a unit normal vector field over M . Let F be a
continuous vector field defined over M . Then we may define the surface integral of
F over M to be:∫

M

F · dS =

∫
M

(F ·N) dS

=

∫
D

(F ·N)
√

det [(DΦ)T (DΦ)] dx1 . . . dxn−1

=

∫
D

(F · c)

√
det [(DΦ)T (DΦ)]

‖c‖
dx1 . . . dxn−1

=

∫
D

(F · c) dx1 . . . dxn−1

=

∫
D

(F · Φu1
× · · · × Φun−1

) dx1 . . . dxn−1

This agrees with the classical formula in R3.
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