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Abstract. In this paper we outline results on orbifold diffeomorphism groups
that were presented at the International Conference on Infinite Dimensional
Lie Groups in Geometry and Representation Theory at Howard University,
Washington DC on August 17-21, 2000. Specifically, we define the notion
of reduced and unreduced orbifold diffeomorphism groups. For the reduced
orbifold diffeomorphism group we state and sketch the proof of the following
recognition result: Let O1 and O2 be two compact, locally smooth orbifolds.
Fix r ≥ 0. Suppose that Φ : Diffr

red(O1) → Diffr
red(O2) is a group isomor-

phism. Then Φ is induced by a (topological) homeomorphism h : XO1 → XO2 .

That is, Φ(f) = hfh−1 for all f ∈ Diffr
red(O1). Furthermore, if r > 0, h is a

Cr manifold diffeomorphism when restricted to the complement of the singu-
lar set of each stratum. We then show that if we replace the reduced orbifold
diffeomorphism group by the unreduced orbifold diffeomorphism group in the
above theorem, we can strengthen the homeomorphism h to an orbifold homeo-
morphism (orbifold structure preserving). Lastly, we state a structure theorem
for the orbifold diffeomorphism group, showing that it is a Banach manifold
for 1 ≤ r < ∞ and a Fréchet manifold if r = ∞. As a corollary of this we
obtain extensions of theorems of the second author to the setting of a smooth,
compact orbifold.

1. Introduction

Orbifolds are a useful and interesting generalization of the notion of manifolds.
They were first studied by Satake where they were referred to as V -manifolds
[Sa1],[Sa2] and later by Thurston [T]. In addition to being objects of study in
their own right, they have come up as a new and unfamiliar domain one must pass
through in order to study problems about manifolds. Some examples are the recent
solution to the Arnold Conjecture [FO], the study of convergence of Riemannian
manifolds [AC], and problems in low dimensional topology [Sc]. One might also
consider to what extent theorems about manifolds carry over to orbifolds. For
example, many important theorems of Riemannian geometry have nice general-
izations in the orbifold category. See [Bo1], [Bo2], [Bo3], [BZ]. Of interest to
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us here are the appropriate orbifold versions of the recognition theorems of Filip-
kiewicz [F], Rubin [Ru], Rybicki [Ry] for manifolds given their homeomorphism
(resp. diffeomorphism) groups and the refinements of these to the recognition the-
orems for symplectic, contact and smooth unimodular structures due to Banyaga
[Ba1], [Ba2], [Ba3], [Ba4], [Ba5]. In all of these recognition theorems, one of
the primary ingredients needed is that the group of structure preserving transfor-
mations act in some sense transitively. In trying to extend similar results to the
category of orbifolds, we immediately find that this primary ingredient is miss-
ing. Orbifolds are not homogeneous objects in the sense that manifolds without
boundary are. Instead, one of the distinguishing features is that they may have a
nowhere dense singular set that must be preserved under any structure preserving
transformation. Even though the underlying topological space of an orbifold with
non-empty singular set may be a manifold, the transformations that preserve the
orbifold structure will never act transitively.

Another difficulty is that many of the fundamental notions in the manifold
category do not have a unique correct generalization to the category of orbifolds.
Despite this, however, many manifold recognition results when formulated with
proper care give the appropriate analogues in the orbifold category.

Our results may be summarized by the following theorems. The first is a partial
recognition theorem for orbifold structures. While not an exact analogue for the
recognition theorems mentioned above, it does give an indication of the kinds of
results that can be proven and the phenomena that typically arise in the orbifold
category.

Theorem A. ([BB1]) Let O1 and O2 be two compact, locally smooth orbifolds.
Fix r ≥ 0. Suppose that Φ : Diffrred(O1) → Diffrred(O2) is a group isomorphism.
Then Φ is induced by a homeomorphism h : XO1 → XO2 . That is, Φ(f) = hfh−1

for all f ∈ Diffrred(O1). Furthermore, if r > 0, h is a Cr manifold diffeomorphism
when restricted to the complement of the singular set of each stratum.

Here, Diffrred(O) denotes the reduced Cr orbifold diffeomorphism group and
XO the underlying topological space of an orbifold O. Note that in [BB1], all
diffeomorphisms were reduced orbifold diffeomorphisms. There is also a notion of
unreduced Cr orbifold diffeomorphism group, and the corresponding result using
these groups is given as Theorem B below.

The restriction to compact orbifolds cannot be removed if one insists on using
the reduced orbifold maps as the following example shows.

Example 1. Let O1 = (0, 1) and O2 = [0, 1], the open and closed unit in-
tervals. These orbifolds have the same homeomorphism group, but are clearly not
homeomorphic spaces.

Also, in general, the homeomorphism h in Theorem A is not necessarily an
orbifold homeomorphism and Theorem A is in some sense the best one can hope
for if one insists on using reduced orbifold diffeomorphism groups. To see this,
consider the following

Example 2. Let Oi, (i = 1, 2) be two so–called Zpi–teardrops with p1 �= p2. It
is clear that the homeomorphism groups of Oi are each isomorphic to the subgroup
of the homeomorphism group of the 2–sphere S2 which fix the north pole. To see
this, just observe that any homeomorphism of S2 that fixes the north pole can
be locally lifted to a pi–fold covering of a neighborhood of the north pole. Note,
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however, that the orbifolds themselves are not orbifold homeomorphic, even though
their underlying spaces XOi = S2, are topologically homeomorphic.

One might also notice that the work of [Ba3],[F],[Ru],[Ry] collectively show
that any automorphism of the structure preserving group of transformations in the
topological (with or without boundary), differentiable, PL, Lipschitz, symplectic
and contact categories must be an inner automorphism. For the orbifold category,
this is not the case, as the following example shows.

Example 3. ([BB2]) For each n > 1 there exists a compact connected orb-
ifold O of dimension n, such that the group of automorphisms Aut(Diffrred(O)) �=
Inn(Diffrred(O)), the group of inner automorphisms. To see this, parameterize S2

with spherical coordinates (θ, φ), 0 ≤ θ < 2π, −π/2 ≤ φ ≤ π/2. Let a = (θ,−π/2)
be the north pole and b = (θ, π/2) be the south pole. Give S2 the structure of a
(p, q)–football orbifold F with p �= q so the singular set = {a}∪{b}. It is not hard to
see that Diffrred(F) is isomorphic to the group of Cr diffeomorphisms of S2 which fix
a and b point-wise. Consider the group automorphism Φ : Diffrred(F) → Diffrred(F)
defined by (Φ(f)) = g ◦ f ◦ g−1 where g(θ, φ) = (θ,−φ). Then Φ /∈ Inn(Diffrred(F)).
To see this, suppose Φ ∈ Inn(Diffrred(F)), so that there exists h ∈ Diffrred(F)
with Φ(f) = Ψ(f) = h ◦ f ◦ h−1 for all f ∈ Diffrred(F). Choose a neighborhood
Ua of a with h(Ua) ∩ g(Ua) = ∅, and let f0 ∈ Diffrred(F) with supp(f0) ⊂ Ua.
Then Φ(f0) = g ◦ f0 ◦ g−1 has support in g(Ua), a neighborhood of b. However,
Ψ(f0) = h ◦ f0 ◦ h−1 has support in h(Ua), a neighborhood of a. Thus Φ �= Ψ, and
we conclude that Φ is not an inner automorphism. Higher dimensional examples
can be constructed by considering products with spheres F × Sn.

Remark 4. This behavior cannot occur for one–dimensional orbifolds since
the only non-trivial 1–orbifolds are closed rays and closed intervals. The results in
[BB1] are enough to exclude such examples since they can have only Z2 singulari-
ties.

One can, however, show that Theorem A admits a generalization which does
give the analogue of the reconstruction result that holds for manifolds. To show
this, we must work with a different notion of orbifold diffeomorphism, namely the
unreduced orbifold diffeomorphisms.

Theorem B. Let O1 and O2 be two compact, locally smooth orbifolds. Fix
r ≥ 0. Suppose that Φ : DiffrOrb(O1) → DiffrOrb(O2) is a group isomorphism.
Then Φ is induced by a Cr orbifold diffeomorphism h : XO1 → XO2 . That is,
Φ(f) = hfh−1 for all f ∈ DiffrOrb(O1).

Here, DiffrOrb(O) denotes the unreduced Cr orbifold diffeomorphism group.
The above results show that the algebraic structure of the homeomorphism

(resp. diffeomorphism) groups determines the orbifold (but only the topological
structure of the orbifold in the case of the reduced diffeomorphism group).

A related problem to consider is determining the topological structure of the
diffeomorphism group of an orbifold. In the case of a compact manifold, it is
well known that the group of Cr diffeomorphisms is a manifold for 0 < r ≤ ∞
where the model space is the space of Cr tangent vector fields on M . See, for
example [Ba3]. This is a Banach space for 0 < r < ∞ and a Fréchet space for
r = ∞. One might naively think that the orbifold diffeomorphism group is itself
an infinite dimensional orbifold, but one only need remember that the orbifold
diffeomorphism group is a group and hence is homogeneous. Thus, it cannot be a
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non-trivial orbifold. In fact, in the case of a smooth compact orbifold, the structure
of the orbifold diffeomorphism group holds no surprises.

Theorem C. Let O be a smooth compact orbifold without boundary and let
DiffrOrb(O) be the group of unreduced Cr orbifold diffeomorphisms equipped with the
topology of uniform convergence of all derivatives of orders ≤ r. Then DiffrOrb(O)
is a manifold modeled on the topological vector space Dr

Orb(O) of Cr orbifold sec-
tions of the tangent orbibundle equipped with the topology of uniform convergence
of derivatives of order ≤ r. This vector space is a Banach space if r <∞ and is a
Fréchet space if r = ∞.

The rest of the paper will be devoted primarily to giving the background infor-
mation and terminology used the statements of the above theorems. We will also
give an indication of the proofs of Theorem A and Theorem B. The full proof of
Theorem A can be found in [BB1] and the proofs of Theorem B and Theorem C
will appear elsewhere in [BB3] and [BB4]. Since it is a fundamental tool in proving
both Theorems A and B, we recall the following theorem of Rubin [Ru]. A subset
S of a topological space X is called somewhere dense if the interior of its closure is
nonempty. That is, int(cl(S)) �= ∅.

Theorem (Rubin). Let Xi, (i = 1, 2) be locally compact Hausdorff spaces and
Gi subgroups of the group of homeomorphisms of Xi such that for every open set
T ⊂ Xi and x ∈ T the set {g(x) | g ∈ Gi and g |(Xi−T )= Id} is somewhere dense.
Then if Φ : G1 → G2 is a group isomorphism, then there is a homeomorphism h
between X1 and X2 such that for every g ∈ G1, Φ(g) = hgh−1.

As a Corollary of the above results, we obtain generalizations of results of the
second author (see [Bru1] and [Bru2]) to actions of finitely generated groups on
smooth compact orbifolds.

Corollary 5. Let O be a smooth compact orbifold, Γ a finitely generated
group and φ ∈ Hom(Γ,DiffrOrb(O)) an action of Γ on O by Cr orbifold diffeomor-
phisms (r > 1). If H1(Γ, Dr−1

Orb (O)) = 0, then there is a neighborhood U of φ
in Hom(Γ,DiffrOrb(O)) (equipped with the compact-open topology) so that for each
ψ ∈ U , there is an h ∈ Diffr−1

Orb(O) so that

ψ(γ) ◦ h = h ◦ φ(γ)

for all γ ∈ Γ. If r = 1, then we require that in addition H0(Γ, D0
Orb(O)) = 0.

Here, D0
Orb(O) is as in the proof of Theorem C and is a Γ module via the induced

orbibundle map γ∗ : Dr
Orb(O) → Dr

Orb(O)

2. Orbifolds

Our definition is modeled on the definition in Thurston [T].

Definition 6. A (topological) orbifold O, consists of a paracompact, Hausdorff
topological space XO called the underlying space, with the following local structure.
For each x ∈ XO and neighborhood U of x, there is a neighborhood Ux ⊂ U , an
open set Ũx ∼= R

n, a finite group Γx acting continuously and effectively on Ũx
which fixes 0 ∈ Ũx, and a homeomorphism φx : Ũx/Γx → Ux with φx(0) = x.
These actions are subject to the condition that for a neighborhood Uz ⊂ Ux with
corresponding Ũz ∼= R

n, group Γz and homeomorphism φz : Ũz/Γz → Uz, there is
an embedding ψ̃ : Ũz → Ũx and an injective homomorphism f : Γz → Γx so that ψ̃
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is equivariant with respect to the f
(
that is, for γ ∈ Γz, ψ̃(γy) = f(γ)ψ̃(y) for all

y ∈ Ũz
)
, such that the following diagram commutes:

Ũz
ψ̃ ��

��

Ũx

��
Ũz/Γz

ψ=ψ̃/Γz ��

φz

��

Ux/f(Γz)

��
Ũx/Γx

φx

��
Uz �� Uz

The covering {Ux} of XO is not an intrinsic part of the orbifold structure. We
regard two coverings to give the same orbifold structure if they can be combined
to give a larger covering still satisfying the definitions.

Let 0 ≤ r ≤ ∞. An orbifold O is a Cr orbifold if each Γx acts Cr–smoothly
and the embedding ψ̃ is Cr.

Definition 7. We say that an orbifold O is locally smooth if the action of Γx
on Ũx ∼= R

n is an orthogonal action for all x ∈ O. That is, for each x ∈ O, there
exists a representation L : Γx → O(n) such that if γ · y denotes the Γx action on
Ũx, then we have γ · y = L(γ)y for all y ∈ Ũx.

Definition 8. An orbifold chart about x in a locally smooth orbifold O is a
4-tuple (Ũx,Γx, ρx, φx) where Ũx = R

n, Γx is a finite group, ρx is a representation
of Γx : ρx ∈ Hom(Γx,O(n)), with O(n) the orthogonal group, and φx is a home-
omorphism: φx : Ũx/ρx(Γx) → Ux, where Ux ⊂ XO is a (sufficiently small) open
relatively compact neighborhood of x, and φx(0) = x.

For convenience we will often refer to the neighborhood Ux as an orbifold chart,
and ignore the representation ρx and write Ux = Ũx/Γx. If necessary we will denote
by πx : Ũ → Ũ/ρx(Γx), the quotient map defined by the action of ρx(Γx) on Ũ .

In the remainder, all orbifolds will be assumed to be locally smooth.

Definition 9. Let O be a connected n-dimensional locally smooth orbifold.
Given a point x ∈ O, there is a neighborhood Ux of x which is homeomorphic to
a quotient Ũx/Γx where Ũx is homeomorphic to R

n and Γx is a finite group acting
orthogonally on R

n. The definition of orbifold implies that the germ of this action
in a neighborhood of the origin of R

n is unique. We define the isotropy group of x
to be the group Γx. The singular set of O is the set of points x ∈ O with Γx �= {1}.
Denote the singular set of O by Σ1. Then Σ1 is also a (possibly disjoint) union⋃
l1

Σ(l1) of connected locally smooth orbifolds of strictly lower dimension (though
different components may have different dimensions). See the section of examples.
Each of the orbifolds Σ(l1)

1 has a singular set
⋃
l2

Σ(l1)(l2)
1 . Define the singular set

of Σ1 to be Σ2 =
⋃

(l1)(l2)
Σ(l1)(l2)

1 . Proceeding inductively, we get a stratification
of O:

O = Σ0 ⊃ Σ1 ⊃ Σ2 ⊃ · · ·Σk−1 ⊃ Σk = ∅ for some k ≤ n+ 1
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By a result of M.H.A Newman [D], we note that the singular set of a topological
orbifold is a closed nowhere dense set. See also [T].

Products of (locally smooth) orbifolds inherit a natural (locally smooth) orb-
ifold structure:

Definition 10. Let Oi for i = 1, 2 be orbifolds. The orbifold product O1 ×O2

is the orbifold having the following structure:
(1) XO1×O2 = XO1 ×XO2 .
(2) For each (x, y) ∈ XO1×O2 and pair of orbifold charts Ux � x and Vy � y

Ux × Vy is an orbifold chart around (x, y). Explicitly,

(Ũx × Ṽy,Γx × Γy, ρx × ρy, φx × φy)

is an orbifold chart around (x, y).
Note that the isotropy group Γ(x,y) = Γx × Γy.

We close this section with some elementary results on orbifolds. The proofs
can be found in [BB1], and so we omit them.

Proposition 11. If O is locally smooth then in each local orbifold chart Ũx
the fixed point set Sx = {y ∈ Ũx | Γx · y = y} is a topological sub-manifold of Ũx.

Proposition 12. If O is a smooth Cr orbifold with r > 0, then it is locally
smooth.

3. Examples of Orbifolds

Example 13. Let O = (Sn, can)/G, n > 1, be the n–dimensional hemisphere
of constant curvature 1 (topologically O is just the closed n–disk Dn). G = Z2 ⊂
O(n+1) is the group generated by reflection through an equatorial (n− 1)–sphere.
In this case Σ1 is the equatorial (n− 1)–sphere.

Example 14. Let O be a Zp–football. O = (S2, can)/G, where G ⊂ O(3) is ro-
tation around the z–axis in R

3, through an angle of 2π/p. Here Σ1 = {north pole}∪
{south pole}.

Example 15. Let O be a Zp–football/G, where G is reflection in the equator
of the football that does not contain the singular points. Topologically, O is D2.
Note that the singular set Σ1 = {equator}∪{point}, thus it is possible for different
components of the singular set to have different dimensions.

Example 16. Let O = R
2/G, where G is the crystallographic group generated

by reflecting an equilateral triangle or square in each of its sides to produce a tiling
of R

2. Then O is just the closed triangle or square, with singular set the boundary
of the tiling region. The stratification of O is as follows:

O = Σ0 ⊃ Σ1 = {the boundary of the triangle or square} ⊃
Σ2 = {the vertices} ⊃ Σ3 = ∅

Here, Σ1 is union of the closed line segments making up the boundary of the triangle
or square and each of these line segments is a 1–dimensional orbifold with 2 singular
points. One should observe that Σ1 is not a 1–dimensional orbifold but a union of
1–dimensional orbifolds. The lowest dimensional stratum has dimension 0. Note
that the manifold Σ1−Σ2 is a union of open line segments. If one only quotients out
by the index 2 subgroup G0 of orientation preserving elements of G then O becomes
topologically a 2–sphere. The complement of the singular set is topologically R

2 −
{2 points or 3 points}
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Example 17. Let O be a Zp–teardrop. The underlying space of this orbifold
is S2 with a single conical singularity of order p at the north pole.

Example 18. Consider the group G = Z2 × Z2 generated by rotations of
π radians about the three coordinate axes of R

3. If we consider the quotient of
the 2–sphere S2/G, we get a 2–dimensional orbifold O whose underlying space is
topologically the 2–sphere with 3 singular points. The sin–suspension ΣsinO =
S3/ΣG is an orientable 3–dimensional orbifold. ΣG denotes the suspension of the
action on S2 to S3. In this case, Σ1 is the union of the 3 line segments joining the
suspension points and passing through one of the singular points of O. Σ2 is just
the two suspension points.

Example 19. Let Lp = S3/G be a 3–dimensional lens space. Suspend the
action of G to an action ΣG on the 4–sphere S4. Let O = S4/ΣG. Then the
underlying space of O is not a manifold (or manifold with boundary).

Example 20. An n-dimensional smooth manifold with corners (that is, a para-
compact, Hausdorff space locally modeled on (−∞,∞)k × [0,∞)n−k, 0 ≤ k ≤ n, k
may vary from point to point, and with smooth overlaps on the charts) is an orb-
ifold with local model R

n/G where G = (Z2)n−k and the action of G is generated
by reflection through the appropriate coordinate planes xi� = 0 for $ = 1, . . . n− k.
The singular set Σ is then the boundary (those points that do not have neighbor-
hoods homeomorphic to R

n), and the stratification given by the fixed point sets of
the various subgroups of of G.

4. Orbifold Maps

We now discuss two natural definitions of maps between orbifolds. Note that
in the paper [BB1], all maps discussed were reduced orbifold maps.

Definition 21. An unreduced orbifold map (f,Θf,x, fx) from O1 to O2 consists
of the following:

(1) A continuous map f : XO1 → XO2 of the underlying topological spaces.
(2) For each x, a group homomorphism Θf,x : Γx → Γf(x)
(3) A germ fx at 0 of a Θf,x equivariant lift f̃x : Ũx → Ṽf(x) where (Ũx,Γx, ρx, φx)

is an orbifold chart about x, (Ṽf(x),Γf(x), ρf(x), φf(x)) is an orbifold chart
about f(x), and such that the following diagram commutes:

Ũx
f̃x ��

��

Ṽf(x)

��
Ũx/Γx

f̃x/Θf,x(Γx)��

��

Ṽf(x)/Θf,x(Γx)

��
Ṽf(x)/Γf(x)

��
Ux

f �� Vf(x)
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Two unreduced orbifolds maps (f,Θf,x, fx) and (g,Θ′
g,x, gx) are considered the

same if f = g, Θf,x = Θ′
g,x, and fx = gx as germs at 0.

Definition 22. A reduced orbifold map is a continuous map f : XO1 → XO2

for which such local liftings exist. We ignore the particular choice of local lift f̃x
and the choice of homomorphism Θf,x.

Definition 23. An orbifold map f : O1 → O2 (either reduced or unreduced)
of smooth orbifolds is Cr–smooth if each of the local lifts f̃x may be chosen to be
Cr.

Given two orbifolds Oi, i = 1, 2, the class of Cr unreduced orbifold maps from
O1 to O2 will be denoted by CrOrb(O1,O2) and the class of reduced Cr orbifold
maps by Crred(O1,O2). For the purely topological categories of locally smooth
orbifolds and unreduced (respectively reduced) continuous orbifold maps we write
C0

Orb(O1,O2) (respectively, C0
red(O1,O2)).

It is a simple matter to verify that composition of orbifold maps whether re-
duced or unreduced results in an orbifold map of the same type.

Definition 24. For any topological space X, let H(X) denote its group
of homeomorphisms. For a topological orbifold O, the group of unreduced orb-
ifold homeomorphisms, HOrb(O) will be the subgroup of H(XO) so that f, f−1 ∈
C0

Orb(XO, XO). If O is a Cr orbifold, DiffrOrb(O) is the subgroup of HOrb(O) with
f, f−1 ∈ CrOrb(O). We will also use Diff0

Orb(O) for HOrb(O). The corresponding
notions for reduced orbifold maps will be denoted by Diffrred(O).

One would expect that orbifold diffeomorphisms preserve the singular set. That
is, in fact, the case and we state it here for completeness. See [BB1].

Lemma 25. Any element of DiffrOrb(O) or Diffrred(O) leaves Σi invariant (as a
set), where Σi is any substratum of O.

The proof of Theorem A requires that apply Rubin’s theorem to the comple-
ment of the singular set of an orbifold. In order to do this, we need to know that
orbits of points under Diffrred(O) are somewhere dense. See [BB1].

Lemma 26. The following are equivalent:
(1) x ∈ O − Σ
(2) The orbit Diffrred(O) · x = {g(x) | g ∈ Diffrred(O)} is somewhere dense.

There is an obvious forgetful homomorphism τ : CrOrb(O1,O2) → Crred(O1,O2)
from the class of unreduced orbifold maps to the class of reduced orbifold maps and
each reduced orbifold map comes from at least one such unreduced orbifold map.

Definition 27. For a Cr orbifold O, and integer 0 ≤ s ≤ r ≤ ∞, let Ss(O) =
ker(τ : DiffsOrb(O) → Diffsred(O)) = {f ∈ DiffsOrb(O) | τ(f) = IdO}. Since Ss(O)
consists of those unreduced lifts of the (always) Cr smooth identity map, we see
that Ss(O) is independent of s, and thus we denote it more simply by S(O) =
Ss(O) = Sr(O), for all 0 ≤ s ≤ r ≤ ∞.

The following result gives the structure of S(O), and its proof basically follows
from the definitions. See [BB4].

Proposition 28. Let x ∈ O, and let (Ũx,Γx, ρx, φx) be an orbifold chart
around x. If σ = (Id,ΘId,x, Id) ∈ S(O), then there is a δ ∈ Γx so that Id(ỹ) = δ · ỹ
for all ỹ ∈ Ũx and ΘId,x(γ) = δ · γ · δ−1. Note that if x ∈ O is non–singular, then
δ = e.
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5. Orbifold Bundles, Orbibundles and Suborbifolds

Since we will ultimately want to look at sections of the tangent bundle to a
smooth orbifold in order to state Theorem C, we now define the notions of unre-
duced and reduced orbifold bundles.

Definition 29. An unreduced (respectively, reduced) orbifold bundle is a triple
(E ,B, p) where E and B are locally smooth orbifolds with p : E → B an unreduced
(respectively, reduced) orbifold map. An orbifold bundle is linear if the orbifold
structures on the total space E and base space B are compatible with the following
local triviality conditions

(1) For each x ∈ XB with isotropy group Γx and orbifold chart Ux ⊂ XB
containing x, so that Ũx ∼= R

n and Ũx/Γx ∼= Ux we have p̃−1(Ũx) ∼=
Ũx × R

k. Also there is a group Gx, an action Px ∈ Hom(Gx,O(n + k))
and a surjective group homomorphism Θp,(x,0) : Gx → Γx so that p̃ is
Θp,(x,0) equivariant, i.e.:

ρx(Θp,(x,0)(g))p̃(y) = p̃(Px(g)y)

for all g ∈ Gx and y ∈ p̃−1(Ũx).
(2) Given another Uz ⊂ Ux with corresponding Ũz ∼= R

n, group Γz, home-
omorphism φz : Ũz/Γz → Uz and embedding ψ̃ : Ũz ↪→ Ũx there are
injective group homomorphisms θz,x : Γz → Γx, Θz,x : Gz → Gx and
embeddings Ψ̃ : Ũz × R

k → Ũx × R
k and Ψ : p−1(Uz) ↪→ p−1(Ux) so that

the following diagram commutes. (Note that all the vertical arrows are
quotient maps obtained by modding out by the action of the appropriate
isotropy groups).

Ũz × R
k

p̃ ������������

��

Ψ̃ �� Ũx × R
k

p̃
����������������

��

Ũz
ψ̃ ��

��

Ũx

��

Ũz × R
k/Gz

p̃/Gz ����������

��

Ψ̃/Θz,x(Gz) �� Ũx × R
k/Θz,x(Gz)

p̃/Θz,x(Gz)������������

��

Ũz/Γz
ψ̃/θz,x(Γz)��

��

Ũx/θz,x(Γz)

��

Ũx × R
k/Gx

p̃/Gx��������������

��

Ũx/Γx

��

p−1(Uz)

p
������������

Ψ �� p−1(Ux)

p
����������������

Uz
ψ �� Ux
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(3) The mappings Ψ̃(y, ·) : p̃−1(y) → p̃−1(ψ̃(y)) are invertible linear maps on
p̃−1(y) for each y ∈ Ũz.

In most cases the actions Px above will be in O(n)×O(k) rather than the more
general case of O(n+ k) that we allow above.

Definition 30. A linear orbibundle is a linear orbifold bundle with the prop-
erty that for all x ∈ O one has Gx ∼= Γx.

Suppose that one is given a topological space XE , a base orbifold B, and a map
p : XE → B satisfying conditions (1)–(3). Then XE can be given the structure as
the total space of a linear orbifold bundle p : E → B. In particular, the total space
E is an orbifold.

Definition 31. Let O be an n–dimensional smooth orbifold. The tangent
orbibundle of O, p : TO → O is the linear orbibundle defined by the following
construction. If Ux is an orbifold chart around x ∈ O, Γx the isotropy group of x,
and Ũx ∼= R

n so that Ux ∼= Ũx/Γx, then p−1(Ux) ∼= (Ũx×R
n)/Γx where Γx acts on

Ũx × R
n via

γ · (x, v) = (γ · x, dγx(v))
The definition of the tangent orbibundle allows the following
Definition 32. For a Cr orbifold map f : O1 → O2, the tangent mapping

Tf : TO1 → TO2 is the Cr−1 orbifold map defined by:

T̃ f(x, v) = [(f̃(x̃), df̃x̃(ṽ)]

where [(x̃, ṽ)] is the equivalence class of (x̃, ṽ) ∈ Ũx × R
n and (x, v) ∼= [(x̃, ṽ)].

One may similarly define the unreduced orbifold tangent mapping of an unreduced
orbifold map by including the homomorphism information. Tf is an orbifold map
in the sense of Definition 21.

Definition 33. An unreduced orbisection of an orbifold bundle E over an
orbifold O is an unreduced orbifold map f : O → E such that p ◦ f = IdO. In other
words, it is simply a section in the category of orbibundles and unreduced orbifold
maps. Likewise, we may define a reduced orbisection of a reduced orbibundle by
using reduced orbifold maps.

We have the following structure result for orbisections [BB4].
Proposition 34. The set C0

Orb(E) of unreduced orbisections of a linear orbi-
bundle E is naturally a real vector space.

Example 35. Given an orbifold O, the orbifold product O × O is itself an
orbifold. The projections p1 and p2 onto the first and second factors respectively
give two different orbifold bundle structures to O×O. Note that this bundle has a
canonical orbifold section, the diagonal = ∆(O) ⊂ O ×O, where ∆ : O → O ×O
is defined by the diagonal map ∆(x) = (x, x) for all x ∈ O and Θ∆,x(γ) = γ × γ
for all γ ∈ Γx.

We now consider suborbifolds. The definition of a suborbifold is somewhat
more delicate than the corresponding notion for a manifold. We want a definition
that is sufficiently flexible so that, in particular, the diagonal ∆(O) ⊂ O × O is a
suborbifold of O ×O.

Definition 36. A suborbifold P of an orbifold O consists of the following.
(1) A subspace XP ⊂ XO equipped with the subspace topology
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(2) For each x ∈ XP and neighborhood W of x in XP there is an orbifold
chart (Ũx,Γx, ρx, φx) about x in O with Ux ⊂ W , a subgroup Gx ⊂ Γx
of the isotropy group of x in O and a ρx(Gx) invariant vector subspace
Ṽx ⊂ Ũx = R

n, so that

(Ṽx, Gx, ρx|Gx
, ψx)

is an orbifold chart for P and
(3)

Vx = ψx(Ṽx/ρx(Gx))
= Ux ∩XP

= φx(πx(Ṽx))

is an orbifold chart for x in P where πx : Ũx → Ũx/ρx(Γx) is the quotient
map.

Remark 37. If one only requires (1) and (2) for a suborbifold P, then we will
say that the suborbifold P is immersed.

Remark 38. It is tempting to define the notion of an m–suborbifold P of an
n–orbifold O simply by requiring P to be locally modeled on R

m ⊂ R
n modulo

finite groups. That is, the local action on R
m is induced by the local action on

R
n. See [T]. This definition is equivalent to the added condition in our definition

that Gx = Γx at all x in the underlying topological space of P. In analogy with
the definition of neat submanifolds of manifolds with boundary [H], we call such
suborbifolds neat. Neat suborbifolds turn out to be too restrictive of a notion for
our purposes. For example the diagonal ∆O ⊂ O ×O is not a neat suborbifold of
O×O. However, using the more general definition 36, the diagonal is a suborbifold.

Remark 39. Suborbifolds are therefore orbifolds whose orbifold structure is a
“substructure” of the ambient orbifold O, in the sense that the restriction to P of
an orbifold map from O are themselves orbifold maps from P.

Remark 40. Let P ⊂ O be a suborbifold. Note that even though a point
p ∈ XP may be in the singular set of O, it need not be in the singular set of P.

Example 41. Let O be an orbifold and O × O be the orbifold product of O
with itself. Let ∆ : O → O × O be the diagonal mapping. By construction, the
diagonal = ∆(O) ⊂ O×O is a suborbifold of O×O with isotropy group Γ(x,x)

∼= Γx
via the diagonal action γ · (x̃, x̃) = (γ · x̃, γ · x̃).

Example 42. Let f ∈ DiffrOrb(O), then the graph of f , graph(f) defined by

graph(f) = {(x, y) ∈ O ×O | y = f(x)}
in O×O is a suborbifold of O. Note the isotropy group Γ(x,y)

∼= Γx acting via the
twisted diagonal action γ · (x̃, ỹ) = (γ · x̃,Θf,x(γ) · ỹ). Similarly given an orbisection
σ of an orbibundle P → O, this defines a suborbifold of the total space of the
orbibundle P.

Definition 43. Let P be anm-dimensional Cr suborbifold of an n-dimensional
Cr orbifold O (where r ≥ 1). The normal orbibundle NP of P in O is the linear
orbibundle over P with projection p : NP → P so that if U is an orbifold chart in
P about x ∈ P then

p̃−1(Ũ) = Ũ × (Rn/Rm)
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with the Γx action defined by

γ · (x, v/Rm) = (γ · x, dγx(v/Rm)).

6. Extending Orbifold Diffeomorphisms and Local Contractions

For any subgroup G of the homeomorphism group H(X) of a topological space
X, let Gc ⊂ G denote those elements of G with compact support in X. Let G0 be
the subgroup of Gc whose elements are isotopic to the identity through elements of
G with compactly supported isotopy. For any self-map f : X → X of a topological
space X, let the support supp(f) = cl{x ∈ X | f(x) �= x} where cl(S) denotes
the closure of the set S. By compactly supported isotopy we mean an isotopy
f : [0, 1]×X, such that supp(f) ⊂ [0, 1]×X is compact. The following results can
be found in [BB1].

Proposition 44. Let Σ denote the singular set of an orbifold O. The group
Diff0(O−Σ)c is a subgroup of Diff0

red(O) for any topological orbifold O. Moreover,
if O is Cr-smooth, then for each component A = Σ(l1)(l2)···(lm)

m of Σm and f ∈
Diffr(A − ΣA)0, there is an extension g ∈ Diff0

red(O) and a neighborhood U of
Σ(l1)(l2)···(lm)
m in O such that supp(g) ⊂ U and the restriction g|

Σ
(l1)(l2)···(lm)
m

= f for
any 1 ≤ r ≤ ∞.

The proof Theorems A and Theorem B will require that there are enough
local orbifold diffeomorphisms whose behavior under the group isomorphism can
be controlled. To this end, we use the following

Definition 45. For a locally compact Hausdorff space X, a subgroup G ⊂
H(X) and x ∈ X, we say that gx ∈ G is a local contraction about x if:

(1) x ∈ supp(gx) and supp(gx) is compact
(2) for all open neighborhoods V and W of x in supp(gx) with W ⊂ V ⊂ V ⊂

int(supp(gx)) there is an N ∈ N so that gnx (V ) ⊂W for all n > N .
(3) gx(x) = x

For locally smooth orbifolds there are plenty of local contractions:
Proposition 46. If O is locally smooth, then for each x ∈ O and neighborhood

U of x there is a (reduced) local contraction about x with support in U .

7. Proof of Theorem A

We sketch an outline of the proof of Theorem A in the locally smooth case.
The full proof, including the extension to the smooth case may be found in [BB1].
Note that for any open subset U of an orbifold O, x ∈ U if and only if there is a
neighborhood V of x so that V − Σ ⊂ U − Σ and for an open subset U as above,
x ∈ cl(U) if and only if (V − Σ) ∩ (U − Σ) �= ∅ for all neighborhoods V of x. Note
that these follow almost trivially from the nowhere density of the singular set. In
brief, the outline of the proof is as follows.

Let O1 and O2 be two compact, locally smooth orbifolds and let Φ : Diffrred(O1) →
Diffrred(O2) be a group isomorphism. By Lemmas 25 and 26, Proposition 44 and
Rubin’s theorem we have a homeomorphism h : O1 − Σ1 → O2 − Σ2 such that for
every f ∈ Diffrred(O1) we have Φ(f) = hfh−1. Note that this implies that the sin-
gular sets of Oi are either both empty or are both non-empty. To see this, suppose
Σ1 �= ∅ and that Σ2 = ∅. Then O2 = O2 − Σ2 is a closed manifold. O1 − Σ1,
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however, is a non–compact manifold, and this contradicts the existence of a home-
omorphism h : O1 −Σ1 → O2 −Σ2 guaranteed by Rubin’s theorem. Since Rubin’s
theorem implies Theorem A when Σ1 = Σ2 = ∅ (the manifold case), we need only
concern ourselves with case when Σ1 and Σ2 are non–empty.

Next, we extend h to a bijection h : O1 → O2 inducing the group isomorphism
as follows:

Let x ∈ Σ1, and let Ux be a relatively compact open neighborhood of x in O1.
By Proposition 46, there exists a gx ∈ Diffrred(O) which is a local contraction about
x with support in Ux. Let ĝx = Φ(gx), and Ûx = int

(
cl(h(Ux − Σ1))

)
. It follows

from Rubin’s theorem that supp(ĝx) ⊂ cl(Ûx). For details, see [BB1].
We now show that ĝx possesses a non-empty invariant set Yx ⊂ int(supp(ĝx))∩

Σ2. For this, Let Ŵ ⊂ Ûx be any relatively compact open subset of O2 with

x ∈ int
(
cl(h−1(Ŵ − Σ2))

)
Compactness of O2 makes this possible. For any neighborhood V of x with cl(V )−
Σ1 ⊂ h−1(Ŵ − Σ2) there is an m > 0 so that

gmx
(
h−1(Ŵ − Σ2)

)
⊂ V ⊂ int

(
cl(h−1(Ŵ − Σ2))

)
since gx is a local contraction about x. Therefore,

x ∈
⋂
n<N

gmnx

(
cl

(
h−1(Ŵ − Σ2)

))
�= ∅

which implies ⋂
n<N

cl
(
gmnx

(
h−1(Ŵ − Σ2)

))
�= ∅

and so by definition of ĝx and h,⋂
n<N

cl
(
h−1

(
ĝmnx (Ŵ − Σ2)

))
�= ∅

which in turn implies, ⋂
n<N

h−1
(
ĝmnx (Ŵ ) − Σ2

)
�= ∅

It now follows that

∅ �=
⋂
n<N

h ◦ h−1
(
ĝmnx (Ŵ ) − Σ2

)
⊂

⋂
n<N

ĝmnx (Ŵ )

and so ⋂
n<N

ĝmnx (cl(Ŵ )) �= ∅

Then the collection of closed sets
{
ĝmnx (cl(Ŵ ))

}
has the finite intersection property,

and so by compactness of O2 we have

Yx =
⋂
n>0

ĝmnx (cl(Ŵ )) �= ∅.

By construction, Yx =
⋂
m>0 ĝ

mn
x (cl(Ŵ )) is a compact, ĝx invariant set. We claim

that Yx is independent of gx and the subset Ŵ . To see this, suppose that g′x is
another local contraction with fixed point x, and Ŵ ′ ⊂ O2 is a compact subset of



14 JOSEPH E. BORZELLINO AND VICTOR BRUNSDEN

int
(
supp(Φ(g′x))

)
satisfying the same requirement of Ŵ as above. As both gx and

g′x are local contractions, for any n > 0 there is an m > 0 so that:

gmx
(
int(cl(h−1(Ŵ − Σ2)))

)
⊂ g′nx

(
int(cl(h−1(Ŵ ′ − Σ2)))

)
and for any m > 0 there is an n > 0 so that:

g′nx
(
int(cl(h−1(Ŵ ′ − Σ2)))

)
⊂ gmx

(
int(cl(h−1(Ŵ − Σ2)))

)
Therefore

⋂
n>0 ĝ

n
x (Ŵ ) ⊂

⋂
m>0 ĝ

′m
x (Ŵ ′) ⊂

⋂
n>0 ĝ

n
x (Ŵ ) which shows the indepen-

dence of Yx on the local contraction.
Let gx and g′x′ be local contractions about x and x′ respectively with disjoint

supports such that supp(gx) ⊂ U and supp(g′x′) ⊂ U ′ where U and U ′ are open
sets with U ∩ U ′ = ∅, U = int(cl(U)) and U ′ = int(cl(U ′)). Therefore h(U − Σ1) ∩
h(U ′ − Σ1) = ∅ and by the remark above, if z ∈ int

(
cl(h(U − Σ1))

)
, then there is

a neighborhood V of z so that V − Σ2 ⊂ int
(
cl(h(U − Σ1))

)
− Σ2 = h(U − Σ1).

Therefore z /∈ int
(
cl(h(U ′ − Σ1))

)
. Reversing the roles of U and U ′ shows that

int
(
cl(h(U − Σ1))

) ⋂
int

(
cl(h(U ′ − Σ1))

)
= ∅

Since Yx ⊂ int
(
cl(h(U − Σ1))

)
and Yx′ ⊂ int

(
cl(h(U ′ − Σ1))

)
, Yx ∩ Yx′ = ∅.

Therefore for any two such subsets Yx and Yx′ of O2, if Yx ∩ Yx′ �= ∅ then Yx = Yx′

and x = x′.
Given a k ∈ Diffrred(O1), x ∈ Σ1 and a local contraction gx about x, the orbifold

diffeomorphism k ◦ gx ◦k−1 is a local contraction about k(x). Hence Φ(k ◦ gx ◦k−1)
will have invariant set Yk(x). Since Φ is a group isomorphism between Diffrred(O1)
and Diffrred(O2), the invariant set of Φ(k ◦ gx ◦ k−1) will be Φ(k)(Yx). Therefore
Φ(k)(Yx) = Yk(x) for all x ∈ Σ1. We will use this below to prove that the sets Yx
consist of a single point.

Let y ∈ Yx, and ĝy ∈ Diffrred(O2) be a local contraction about y. Let gy =
Φ−1(ĝy) and then by definition y ∈ ĝny (Yx) = Ygn

y (x) for all n ≥ 0. Hence Yx ∩
ĝny (Yx) �= ∅ for all n ≥ 0 and so Yx = ĝny (Yx) for all n ≥ 0. If z ∈ Yx ∩ supp(ĝy)
then for any neighborhood V of y in O2, there is an n > 0 so that ĝny (z) ∈ V
which implies that Yx∩ int(supp(ĝy)) = {y}. Since ĝy was essentially arbitrary, this
implies that Yx = {y}, that is, the invariant set Yx of gx consists of a single point.

Define the extension h of h to all of O1 by the following:

h(x) =

{
h(x), if x ∈ O1 − Σ1

Yx, if x ∈ Σ1

By construction, h is an injection inducing the group isomorphism. Similarly we
can construct an injection h−1. Continuity of h follows from the following. Given
x ∈ O1 and a neighborhood Ux of x, then there is a local contraction gx about x
with support in Ux (by Proposition 46). By construction, x ∈ int(supp(gx)) and so
the collection

B =
⋃
x∈O1

⋃
Ux�x

{
int(supp(gx))

∣∣ int(supp(gx)) ⊂ Ux
}

forms a base for the topology of O1. Let Fix(f) = {x ∈ O | f(x) = x}. Thus

h
(
(O1 − int(supp(gx))) ∪ {x}

)
= h

(
Fix(gx)

)
= Fix

(
Φ(gx)

)
=

(
O2 − int(supp(Φ(gx)))

)
∪ {h(x)}
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so
h
(
O1 − int(supp(gx))

)
= O2 − int

(
supp(Φ(gx))

)
and therefore

h
(
int(supp(gx))

)
= int

(
supp(Φ(gx))

)
and so h maps basic open sets to basic open sets and so h is continuous.

Similarly, h−1 is continuous. Note that by construction

h ◦ h−1 = Id on O2 − Σ2

and
h−1 ◦ h = Id on O1 − Σ1.

Since O2−Σ2 is dense in O2 and O1−Σ1 is dense in O1, we have that h◦h−1 = Id
on O2 and h−1 ◦ h = Id on O1. Hence h−1 = (h)

−1
and so h is a homeomorphism

that induces the group isomorphism Φ. The proof of Theorem A is complete.

8. Proof of Theorem B

To prove Theorem B, given a group isomorphism Φ̃ : DiffrOrb(O1) → DiffrOrb(O2),
we first show that Φ̃ induces a group isomorphism Φ : Diffrred(O1) → Diffrred(O2).
Let τ : DiffrOrb(O) → Diffrred(O) denote the forgetful homomorphism. Define Φ by
Φ(f) = τ ◦Φ̃◦τ−1. We show that this map is well–defined. Suppose f̃1, f̃2 ∈ τ−1(f).
Note that f̃1|O1−Σ1 = f̃2|O1−Σ1 . If we consider the manifolds Oi − Σi, the groups
of diffeomorphisms DiffrOrb(Oi)|Oi−Σi

, (the restrictions of elements of DiffrOrb(Oi)
to Oi − Σi), and the group isomorphism Φ̃ between them, the hypotheses of Ru-
bin’s theorem are satisfied (by Lemma 26), and thus there exists a homeomorphism
h : O1 − Σ1 → O2 − Σ2 with Φ̃(f̃) = h ◦ f̃ ◦ h−1 for all f̃ ∈ DiffrOrb(O1)|O1−Σ1 .
We then conclude that Φ̃(f̃1) = Φ̃(f̃2) on O2 −Σ2. This is enough to conclude that
τ ◦ Φ̃(f̃1) = τ ◦ Φ̃(f̃2) as elements of Diffrred(O2).

By Theorem A, there is a homeomorphism h : XO1 → XO2 inducing Φ. The
remainder of the proof is to show that h has local lifts in neighborhoods of each
x ∈ Σ1 that are Γx equivariant once there are the appropriate homomorphisms
between x and h(x). To show that h has the appropriate local lifting properties
we examine the group S(O) = ker(τ : DiffrOrb(O) → Diffrred(O)). Note that it
is enough to examine those automorphisms that cover the identity. The previous
shows that since Φ(Diffrred(O1)) = Diffrred(O2), it follows that Φ̃(S(O1)) = S(O2).
The homomorphism Φ̃ induces a local homomorphism Θx : Γx → Γh(x) of isotropy
groups as follows. Let (Ũx,Γx, ρx, φx) be an orbifold chart around x ∈ Σ1, y = h(x)
and (Ũy,Γy, ρy, φy) an orbifold chart around y so that

h(φx(Ũx/Γx)) = φy(Ũy/Γy)

Let Dx ⊂ Ũx and D′
y ⊂ Ũy be Dirichlet domains for the actions of Γx and

Γy respectively. For z ∈ Dx there is a unique γ ∈ Γx so that γ−1 · z ∈ Dx. Let
σγ ∈ S(O1) be the element that sends Ũx � z → γ · z (See Proposition 28). Define
Θx : Γx → Γy by Θx(γ) = γ′ where Φ̃(σγ) = σ′γ′ ∈ S(O2). It is easily checked that
this is a group homomorphism. For any z ∈ Ũx, we define a Θx equivariant lift h
of h by first defining it for z ∈ Dx as the unique h(z) = z′ ∈ D′

y so that

φy(Γy · z′) = h(φx(Γx · z))
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and then extending to z ∈ γ ·Dx by letting h(z) = z′ where

Θx(γ−1) · z′ ∈ D′
y

and
φy(Γy · z′) = h(φx(Γx · z))

By construction, this is a Θx equivariant lift of h to a neighborhood of x and so
the triple (h,Θx, h) is an (unreduced) orbifold homeomorphism inducing the group
isomorphism Φ̃.

9. Proof of Theorem C

We sketch the proof of this result. The details may be found in [BB4] and
[BB3]. The general idea is to mimic the details as much as possible of the analogous
proof for manifolds. That this is possible leads to some extensions of several results
on group actions.

It suffices to construct a neighborhood of the identity homeomorphic to some
open set of the appropriate topological vector space (a Banach space for 1 ≤ r <∞
and a Fréchet space for r = ∞). Let NO be the normal orbibundle of the diagonal
∆(O) in O × O. That is, it is locally the quotient of T∆(O)(O × O)/T̃∆(O), i.e.
the normal orbibundle of the diagonal in the Cartesian product O×O. There is an
orbifold tubular neighborhood of ∆(O) that is covered by NO. With a little work,
one can see that NO is isomorphic to TO. We let

exp : NO → O ×O
be the exponential map induced by a Riemannian metric on O. This induces a map
which by abuse of notation we also call exp,

exp : Dr
O(O) → CrOrb(O,O)

Where Dr
O(O) is the topological vector space of Cr orbisections of the orbibundle

NO. The above defines a C0 neighborhood of the identity (which corresponds to
exp(0)) as in the manifold case. A sufficiently small C1 neighborhood of the identity
in CrOrb(O,O) is in DiffrOrb(O) and so this gives DiffrOrb(O) a manifold structure.
For details, see [BB4].
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